General discussion of SQL Topics; aimed for the novice-intermediate level Microsoft SQL Server User. Currently focuses on using SQL Server 2005.

Tuesday, May 6, 2008



This covers the syntax and some examples on how to create an Index for a table. I’ll finish this blog entry with an alternative method for creating an index using SQL Server Management Studio (SSMS).


The following is the main syntax for CREATE INDEX from Books Online (BOL). You can view the entire syntax by visiting the referenced link.
NOTE: If you do not understand how to read this syntax please review my blog entry “Understanding MSDN Syntax Conventions


    ON <object> ( column [ ASC | DESC ] [ ,...n ] )

    [ INCLUDE ( column_name [ ,...n ] ) ]

    [ WITH ( <relational_index_option> [ ,...n ] ) ]

    [ ON { partition_scheme_name ( column_name )

         | filegroup_name

         | default



[ ; ]

UNIQUE – The index key used may not be duplicated in another row.

CLUSTERED | NONCLUSTERED – When using CLUSTERED, the logical order of the key values determines the physical order of the rows in the table. You may only have a single clustered index per table. CLUSTERED indexes should be created before any NONCLUSTERED indexes. In cases where the CLUSTERED index is created after the NONCLUSTERED index, the NONCLUSTERED indexes will be rebuilt.
NOTE: CLUSTERED is the default, if you OMIT the [CLUSTERED | NONCLUSTERED] argument then SQL will first look for a CLUSTERED index, if not found it will create the index as CLUSTERED; if it CLUSTERED already exists then it will create the index as NONCLUSTERED.

index_name – Gives your index a name. A common practice is to prefix the name with “idx_” or “ix”. An example of an index for Last Names of a customer table might be called “idx_Customers_Last_Names” or “ix_Customers_Last_Names”.

<object> - Name of the table the index is being created for. This can be up to a four part name, such as Servername.DatabaseName.Schema.TableName, as with other commands you do not always have to fully qualify (type all four parts) the <object>. You only need to be able to determine the table, without causing confusion. Example if you have two tables called Customers, then you’d at minimum need to qualify the table using the SCHEMA_NAME; such as Colorado.Cusotmers and California.Customers.

column_name [ASC | DESC] – Specify the column, or columns, to make the index for. There is no minimum or limit to the number of columns you can specify. Typically it is suggested, for CLUSTERED indexes, to use only the columns that can logically be organized; such as the First_Name and Last_Name columns. In NONCLUSTERED indexes you usually want to add ‘helper’ columns; such as the Street_Address and Phone_Number. See my blog entry “Introduction to Indexes” for additional details in choosing the appropriate columns for indexing.

<relational_index_option> - You can specify additional options with this argument, this goes beyond the scope of this blog entry. I might cover this in a later entry. For now, if you want specific details as to what options you can use with this argument and how to use the argument then review the BOL syntax command at the referenced location above.

partition_scheme_name (column_name) | filegroup_name | default - You can specify the partition scheme and columns to include in your index. This goes beyond the scope of this blog entry. I might cover this in a later entry. For now, if you want specific details as to what options you can use with this argument and how to use the argument then review the BOL syntax command at the referenced location above.

Simple Terminology:

As you can see with just a little bit of the Syntax I’ve posted, this can be quite a complicated T-SQL command. Yet, it will be among the most commonly used throughout the creation and life-span of your tables. You’ll constantly find yourself tweaking your indexes as your needs change and the data defined within the database changes. You can think of indexes as a child to your table, as with all children they will grow in complication and evolve as their experiences grow. Indexes among a table can have the same phases of ‘life’ occur also.

As with the Customer’s table example you might originally only be storing the customer’s first name, last name, street address, city, state, zip. So you may have a CLUSTERED index on the last name, then first name columns. Maybe even create a NONCLUSTERED index for the street address.

Now, let’s say a couple of years later you find that you now want to store the customer’s phone number, fax number, maybe mailing lists columns with an opt-in designator for your mailing lists. Then you decide it would be nice to just look up customer’s by their phone numbers, or find the customer’s who’ve ‘opted-in’ to certain mailing lists. You might then create additional NONCLUSTERED indexes to make these searches more efficient. Especially the Mailing Lists opt-in columns (assuming you have 100s of mailing lists…following Normalization rules would mean this should be in a separate table; but for this example it is in the Customer’s table).

Now, let’s say a year later you decide to Normalize your Customer’s table and separate the Mailing Lists columns into a “Mailing_Lists” table. Obviously the indexes for the Mailing Lists won’t be needed in the Customer’s Table, thus you’d drop those indexes; and most likely you would’ve created the appropriate indexes in the “Mailing_Lists” table when you created the table.

As you can see, the indexes can have different reasons to be tweaked. I find most commonly I will look into tweaking the indexes when I have large queries running that are taking up resources. I can usually find an index that could be added or modified that can help to improve the efficiency of the search results being returned. There are many different methods and ways to determine when to use an index and how to optimize your indexes; I’d suggest trial and error (with test systems only) as a first option. I’d also suggest reading up on optimizing queries and/or SQL Server performance (in that order). Queries are what drive your data, what gives you your results.

It’s usually a good idea to be in the habit of obtaining performance information, especially in large databases and periodically review the usage of your indexes and adjust them as appropriate. There is no perfect formula, but there are many good methods and discussions on how to achieve the best performance. Always be willing to read and try to understand your options; and when possible spend time testing to see how things are affected by your changes. What might look good today, could end up causing problems you won’t see until a few days have passed…this is why I must stress…TEST, TEST, TEST!

Example Syntax:

The following will create a UNIQUE CLUSTERED index on the Customer’s table using the Last Name and First Name columns (notice the order of names is Last then First because of logical searches will typically be performed on the last name, and then the results would be sorted by the first name):

USE myDemoTable;



ON Customers (Last_Name, First_Name);


The following example will create a NONCLUSTERED index on the Customers table using the Street Address column:

USE myDemoTable;



ON Customers (Street_Address);


The following example creates a UNIQUE NONCLUSTERED index on the Customers table using the customer’s phone number column. This will ensure that none of our customers have a duplicate phone number as an existing customer already has:

USE myDemoTable;



ON Customers (Phone_Number);


If you were to attempt to enter a new customer and use a phone number that already exists with another customer you will get a “Msg 2601, Level 14” error code that states you cannot insert a duplicate key.

Also, note that in the second example I used the prefix “ix_” and the other examples I used the prefix “idx_”. First, I used the “idx_” prefix because for my personal uses this means it is a UNIQUE index; thus anytime I see “idx_SOMETHING” I know it is a UNIQUE index and will not allow multiple keys. I use “ix_” to mean that it is NOT unique and is NONCLUSTERED.

Remember that CLUSTERED index is the default index type; however, I strongly recommend stating the type of index in every syntax command for two reasons. First, distinction can be easily made when reviewing the syntax at a later time. Second, just because CLUSTERED is the default right now does not guarantee it will be in future SQL Server releases. The less you leave to be interpreted the more compatible you can make your code for future releases (and for backwards compatibility in many cases).

Using SSMS to create your indexes:

You can create indexes within SSMS in several places. The more common areas to create indexes are: Database Engine Tuning Advisor, the Table Designer, and in Database Diagrams, as well as in Object Explorer.

The easiest method, in my opinion, is to create a new index using Object Explorer. In object explorer you will want to navigate to the table you want to create your index on. Expand the table by clicking on the plus sign to the immediate left of the table icon to show the folders containing the objects for that table (Columns, Keys, Constraints, etc). You will right-click on the folder labeled “indexes” and select “New Index…”, this will bring up a new window called “New Index”. Here you can name your index, add the columns for the index and choose many options to go with the creation of your index.

If the “New Index…” is grayed out when you right-click the “indexes” folder then this means you have the table opened in “Design” mode. If this is the case, you can either close the “Table Designer” window and then access the “New Index…” or you can right-click anywhere in the “Table Designer” and select “Indexes/Keys…”. This will bring up a slightly different window, but just as easy to follow to create your indexes.

To modify or delete an index you have two simple methods. If in Object Explorer you can select the Index name under the table’s “Index” folder and right-click the index name and select “Delete”. Otherwise, when in “Table Designer” you can right-click anywhere and select “Indexes/Keys…”, in the resulting window you will highlight the index name you wish to delete. You will then click on “Delete”. CAUTION: There is NO confirmation or UNDO in this window; once that button has been clicked you have removed your index. You cannot CANCEL out of the window either. So make sure this is what you want to do before clicking that button!


Indexes are helpful, simple to create and very powerful in making your queries and database operate at a very efficient level. Anyone can quickly learn to create indexes, modify indexes, and to drop (delete) indexes. Most people will spend a fair amount of time reading about indexes when first learning about them, this is because they are so versatile in usage and can provide such a powerful result when leveraged correctly.

I suggest at minimum to try to understand how indexes are determined and how to optimize them. These are key aspects to indexes that can make the most difference. I also suggest for you to schedule in a regular review period for indexes on your most heavily accessed tables and queries. This doesn’t need to be daily, weekly, or even monthly; but, it should be done over some periodic time because your data needs and accessing will evolve as your database evolves.

Until next time, happy coding!

1 comment:

Anonymous said...

Thank you for this! --- If the “New Index…” is grayed out when you right-click the “indexes” folder then this means you have the table opened in “Design” mode. --- Thought I was going nuts!